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Abstract. The many-body Green’s function theory developed in our previous work for treating the reorien-
tation of the magnetization of thin ferromagnetic films is extended to include the exchange anisotropy. This
leads to additional momentum dependencies which require some non-trivial changes in the formalism. The
theory is developed for arbitrary spin values S and for multilayers. The effects of the exchange anisotropy
and the single-ion anisotropy, which was treated in our earlier work, on the magnetic properties of thin
ferromagnetic films are compared.

PACS. 75.10.Jm Quantized spin models – 75.30.Ds Spin waves – 75.70.Ak Magnetic properties
of monolayers and thin films

1 Introduction

There is increasing activity in experimental and theo-
retical investigations of thin magnetic films and multi-
layers. Of particular interest is the reorientation of the
magnetization as function of temperature and film thick-
ness. The simplest approach for treating thin ferromag-
netic films is the application of mean field theory (MFT)
to a Heisenberg model, by either diagonalizing the corre-
sponding single-particle Hamiltonian [1] or applying ther-
modynamic perturbation theory [2]. This approximation
completely neglects collective excitations (magnons = spin
waves).

In order to take the influence of these collective excita-
tions into account, we have turned to many-body Green’s
function theory (GFT), which allows reliable calculations
over the entire range of temperature of interest. In refer-
ence [3] we treated a spin S = 1/2 Heisenberg monolayer
in a magnetic field and found, by comparing with Quan-
tum Monte Carlo (QMC) calculations, that a Tyablikov
(RPA) [4] decoupling is a very good approximation. There-
fore, we did not try to go beyond RPA in the subse-
quent paper [5], in which we treated the field-induced
magnetic reorientation of a ferromagnetic S = 1 mono-
layer, whereby a second-order single-ion anisotropy was
also included. Whereas the exchange interaction terms are
decoupled by RPA, this is not allowed for the terms com-
ing from the single-ion anisotropy because this leads to
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unphysical results. Instead, we applied a decoupling pro-
cedure proposed by Anderson and Callen [6], which, how-
ever, is a good approximation only for small anisotropies.
This was shown to be the case in reference [7], where we
were able to treat the single-ion anisotropy exactly (for
any strength) by introducing higher-order Green’s func-
tions and subsequently taking advantage of relations be-
tween products of spin operators, which leads to an auto-
matic closure of the hierarchy of the equations of motion
for the Green’s functions with respect to the anisotropy
terms; the terms from the exchange interaction are still de-
coupled by a generalized RPA scheme. In reference [8] we
have investigated the quality of this approach by compar-
ing with QMC calculations. In reference [7] we treated the
spin S = 1 case only; the formal generalization to spins
S > 1 is possible, but its numerical realisation is quite
cumbersome. This is not the case when remaining at the
level of the lowest-order Green’s functions and applying
the Anderson-Callen decoupling. In this case, not only is
the treatment of spins S > 1 feasible, but also multilayers
can be described, as was done in reference [9]. To make
the treatment of multilayers practicable, we had to apply
a new method which not only uses the eigenvalues but
also the eigenvectors of the non-symmetric matrix which
governs the equations of motion for the Green’s functions.
We mention a few related papers in which Green’s function
theory is also applied to spin reorientation problems. In
reference [10] Green’s functions are applied to the reori-
entation problem after a Holstein-Primakoff mapping to
bosons, which is only a valid description at low temper-
atures. In reference [11] the reorientation is obtained by
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the competition of an approximately decoupled single-ion
anisotropy and a schematic shape anisotropy. In [12] the
interplay of the dipole coupling with an easy-plane single-
ion anisotropy is discussed, and in [13] the in-plane dipole
coupling anisotropy of a square ferromagnetic Heisenberg
monolayer is considered.

In our previous work mentioned above, we treated an
isotropic Heisenberg exchange interaction plus a single-ion
anisotropy, the magnetic dipole coupling, and an external
magnetic field. In the present paper, we include the ex-
change anisotropy in the formalism and discuss its effect
on the magnetic properties of thin ferromagnetic films,
in particular in comparison to the influence of the single-
ion anisotropy. As will be shown, the treatment of the
exchange anisotropy requires some non-trivial changes in
the formalism, which are necessary due to additional mo-
mentum dependencies which are absent in the treatment
of the single-ion anisotropies.

The paper is organized as follows. In Section 2 we es-
tablish the Green’s function formalism. For pedagogical
reasons, a large part of the formalism is demonstrated for
the monolayer case and subsequently generalised to the
multilayer case, which can easily be done. In Section 3, we
discuss the field-induced reorientation of the magnetiza-
tion when using the exchange anisotropy for determining
the orientation at temperature T = 0. We fix the strength
of the exchange anisotropy in such a way that it produces
the same Curie temperature for a monolayer as the ap-
plication of the single-ion anisotropy strength used in our
previous work [5,9]. This enables a comparison between
the roles of the single-ion and exchange anisotropies on
the magnetic properties of thin ferromagnetic films. Sec-
tion 4 contains a summary of the results.

2 The Green’s function formalism

We formulate the theory in such a way that the results of
our previous work [5,9] are obtained as limiting cases.

We consider a spin Hamiltonian consisting of
an isotropic Heisenberg exchange interaction with
strength Jkl between nearest neighbour lattice sites, an
exchange anisotropy with strength Dkl, a second-order
single-ion lattice anisotropy with strength K2,k, a mag-
netic dipole coupling with strength gkl, and an external
magnetic field B = (Bx, By, Bz):

H = −1
2
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Jkl(S−
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kSz
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− 1
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Here the notation S±
k = Sx

k ±iSy
k and B± = Bx±iBy is in-

troduced, where k and l are lattice site indices and 〈kl〉 in-
dicates summation over nearest neighbours only. The only
difference from reference [9] is the additional exchange-
anisotropy term.

In order to treat the reorientation problem for general
spin S, we need the following Green’s functions

Gα,mn
ij,η (ω) = 〈〈Sα

i ; (Sz
j )m(S−

j )n〉〉ω,η, (2)

where α = (+,−, z) takes care of all directions in space,
η = ±1 refers to the anticommutator or commutator
Green’s functions, respectively, and n ≥ 1, m ≥ 0 are
positive integers, necessary for dealing with higher spin
values S.

The exact equations of motion are

ωGα,mn
ij,η (ω) = Aα,mn

ij,η + 〈〈[Sα
i ,H]−; (Sz

j )m(S−
j )n〉〉ω,η (3)

with the inhomogeneities
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i , (Sz
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j )n]η〉, (4)

where 〈...〉 = Tr(...e−βH). The equations, leaving out for
the moment the terms due to the dipole coupling, are given
explicitly by
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After solving these equations the components of the
magnetization can be determined from the Green’s func-
tions via the spectral theorem. A solution is possible
by establishing a closed system of equations by decou-
pling the higher-order Green’s functions on the right
hand sides. Contrary to reference [7], where we proceed
to higher-order Green’s functions, we stay here at the
level of the lowest-order equations. For the exchange-
interaction and exchange-anisotropy terms, we use a gen-
eralized Tyablikov- (or RPA-) decoupling

〈〈
Sα
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k ; (Sz

j )m(S−
j )n

〉〉
η
�
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kj,η +
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Gα,mn

ij,η . (6)
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The terms from the single-ion anisotropy have to be decou-
pled differently, because an RPA decoupling leads to un-
physical results; e.g. for spin S = 1/2, the terms due to the
single-ion anisotropy do not vanish in RPA, as they should
do, because in this case

∑
i K2,i〈(Sz

i )2〉 is a constant and
should not influence the equations of motion. In the ap-
pendix of reference [5] we investigated different decoupling
schemes proposed in the literature, e.g. those of Lines [14]
or that of Anderson and Callen [6], which should be rea-
sonable for single-ion anisotropies small compared to the
exchange interaction. We found the Anderson-Callen de-
coupling to be most adequate. It consists in implement-
ing the suggestion of Callen [15] to improve the RPA by
treating the diagonal terms arising from the single-ion
anisotropy as well. This leads to

〈〈(
S±

i Sz
i + Sz

i S±
i

)
; (Sz

j )m(S−
j )n

〉〉
η
�

2〈Sz
i 〉
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[S(S + 1) − 〈Sz
i Sz

i 〉]
)

G±,mn
ij,η . (7)

This term vanishes for S = 1/2 as it should.
After a Fourier transform to momentum space, one

obtains, for a ferromagnetic film with N layers, 3N equa-
tions of motion for a 3N -dimensional Green’s function vec-
tor Gmn:

(ω1 − Γ)Gmn = Amn, (8)

where 1 is the 3N × 3N unit matrix. The Green’s func-
tion vectors and inhomogeneity vectors each consist of N
three-dimensional subvectors which are characterized by
the layer indices i and j

Gmn
ij (k, ω) =




G+,mn
ij (k, ω)

G−,mn
ij (k, ω)

Gz,mn
ij (k, ω)


 , Amn
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A+,mn
ij
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ij

Az,mn
ij


 .

(9)
The equations of motion are then expressed in terms

of these layer vectors, and 3 × 3 submatrices Γij of the
3N × 3N matrix Γ


ω1−
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. . . . . . . . . . . .
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
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j = 1, ..., N. (10)

After applying the decoupling procedures (6) and (7),
the Γ matrix reduces to a band matrix with zeros in
the Γij sub-matrices, when j > i + 1 and j < i − 1. The
diagonal sub-matrices Γii are of size 3 × 3 and have the
form

Γii =



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i

0 −Hz
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i

− 1
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i
1
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
 (11)

where

Hz
i = Zi + 〈Sz

i 〉Jii(q − γk) ,

Zi = Bz
i + Diiq〈Sz

i 〉 + (Ji,i+1 + Di,i+1)〈Sz
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+ K2,i2〈Sz
i 〉
(
1 − 1
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[S(S + 1) − 〈Sz
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i 〉]
)

,

H̃±
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i + 〈S±
i 〉Jii(q − γk) + Ji,i+1〈S±

i+1〉
+ Ji,i−1〈S±

i−1〉 ,

H±
i = H̃±

i − 〈S±
i 〉Diiγk . (12)

For a square lattice and a lattice constant taken to be
unity, γk = 2(cos kx + cos ky), and q = 4 is the number of
intra-layer nearest neighbours. Except for the exchange-
anisotropy terms, Dij , these equations are the same as in
reference [9]. Putting all Dij = 0, one has H̃±

i = H±
i .

Note that owing to the momentum dependence in H±
i

coming from the exchange anisotropy, H̃±
i �= H±

i , which
forbids a naive extension of the formalism of reference [9],
as discussed below.

Approximating the dipole coupling by mean field the-
ory (MFT), which is a good approximation when the
dipole coupling strength is small as compared to the ex-
change interaction strength (as proved in Appendix A
of [9]), one finds that the effects of the dipole coupling
can be included as an effective field:

B±
i = B± +

N∑
j=1

gij〈S±
j 〉T |i−j|,

Bz
i = Bz − 2

N∑
j=1

gij〈Sz
j 〉T |i−j|, (13)

where the lattice sums for a two-dimensional square lattice
are given by (n = |n − j|)

T n =
∑
lm

l2 − n2

(l2 + m2 + n2)5/2
· (14)

The indices lm run over all sites of the jth layer excluding
terms with l2 + m2 + n2 = 0.

One observes that the dipole coupling in MFT leads
to a renormalization of the external field: there is an en-
hancement of the transverse fields, and a reduction of the
field perpendicular to the film.

The 3 × 3 off-diagonal sub-matrices Γij for j = i ± 1
are of the form

Γij =




−Jij〈Sz
i 〉 0 (Jij + Dij)〈S+

i 〉
0 Jij〈Sz

i 〉 −(Jij + Dij)〈S−
i 〉

1
2Jij〈S−

i 〉 − 1
2Jij〈S+

i 〉 0


 .

(15)
When treating the monolayer, one can use the spec-

tral theorem for calculating the components of the mag-
netization. This was done in reference [5] for the case of
spin S = 1 and the single-ion anisotropy by using the
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commutator Green’s functions. In order to obtain suffi-
cient equations it was necessary, to add equations coming
from the condition that the commutator Green’s functions
have to be regular at ω = 0, which we call the regularity
conditions.

For the multilayer problem, however, a naive applica-
tion of the spectral theorem turned out to be forbiddingly
difficult. Instead we invented a method, which we call the
eigenvector method, that uses the eigenvectors as well as
the eigenvalues of the Γ -matrix governing the equations
of motion. This opened up a practicable way to treat mul-
tilayers [9].

If instead, anticommutator Green’s functions are used,
it is not necessary to introduce the regularity conditions,
which nevertheless are valid. We demonstrate this explic-
itly for the monolayer. The use of the anticommutator
Green’s functions also suggests a way for finding the pro-
cedure which can deal with the additional k-dependencies
coming from the exchange anisotropy.

For simplicity, we consider the reorientation in the x-
z-plane, i.e. we use as external field B = (Bx, 0, Bz). The
equations of motion for the monolayer in this case are




ω − Hz 0 Hx

0 ω + Hz −Hx

+ 1
2H̃x − 1

2H̃x ω






G+,mn
k,η

G−,mn
k,η

Gz,mn
k,η


 =




A+,mn
k,η

A−,mn
k,η

Az,mn
k,η


 .

(16)
This system of equations has three eigenvalues

ω1 = 0; ω2,3 = ±εk = ±
√

HzHz + H̃xHx. (17)

and the equations are solved by

Gα,mn
k,η =

∆α,mn
η

∆
, (18)

where ∆α,mn
η is the determinant of the matrix in equa-

tion (16) where column α is replaced by the inhomogeneity
vector, and ∆ = ω(ω − εk)(ω + εk).

Now the spectral theorem [16] is applied in momentum
space

Cα,mn
k = 〈(Sz)m(S−)nSα〉k = lim

δ→0

i
2π

∫ ∞

−∞

dω

eβω + 1

×
(
Gα,mn

k,η=+1(ω + iδ) − Gα,mn
k,η=+1(ω − iδ)

)
. (19)

Using the relation between anticommutator and
commutator

Aα,mn
k,η=+1 = Aα,mn

η=−1 + 2Cα,mn
k , (20)

where it is important that the commutator inhomo-
geneities Aα,mn

η=−1 do not depend on the momentum k, one

obtains the following set of equations

HzC+,mn
k − HxCz,mn

k =

A+,mn
η=−1

(
1
2
εk coth

(
βεk
2

)
− 1

2
Hz

)
+

1
2
HxAz,mn

η=−1,

(21)

− HzC−,mn
k + HxCz,mn

k =

A−,mn
η=−1

(
1
2
εk coth

(
βεk
2

)
+

1
2
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)
− 1

2
HxAz,mn

η=−1,

(22)

H̃xC+,mn
k − H̃xC−,mn

k =
1
2
H̃x

(
A−,mn

η=−1 − A+,mn
η=−1

)
− εk coth

(
βεk
2

)
Az,mn

η=−1.

(23)

Because the observable correlations are in real space, we
have to perform a corresponding Fourier transformation
〈(Sz)m

i (S−)n
i Sα

i 〉 = Cα,mn
i = 1

N

∑
k Cα,mn

k .
Fourier transform of equation (22) yields

− C−,mn
i +

1
N

∑
k

Hx

Hz
Cz,mn

k =
1
2
A−,mn

η=−1

+
1
2
A−,mn

η=−1

1
N

∑
k

εk
Hz

coth
(

βεk
2

)
− 1

2
Az,mn

η=−1

1
N

∑
k

Hx

Hz
·

(24)

Putting this into the Fourier transform of equation (21),
one can eliminate the term 1

N

∑
k

Hx

Hz Cz,mn
k . This will turn

out to be important in the later discussion of the eigen-
vector method where the formalism has to be modified
because one cannot take the k-dependent terms outside
the sum (integral). One obtains

C+,mn
i − C−,mn

i − 1
2
(A−,mn

η=−1 − A+,mn
η=−1) =

1
2
(
A−,mn

η=−1 + A+,mn
η=−1

) 1
N

∑
k

εk
Hz

coth
(

βεk
2

)
· (25)

The Fourier transform of equation (23) can be done di-
rectly and gives

C+,mn
i − C−,mn

i − 1
2
(A−,mn

η=−1 − A+,mn
η=−1) =

− Az,mn
η=−1

1
N

∑
k

εk

H̃x
coth

(
βεk
2

)
· (26)

Equations (25, 26) are sufficient to determine the
observables.

To elucidate these equations we derive the explicit ex-
pressions for spins S = 1/2 and S = 1.

For S = 1/2 we need m = 0 and n = 1. This gives two
equations of motion which determine 〈Sx〉 and 〈Sz〉.

From equation (25) one finds with 〈S−
i S+

i 〉 = 1/2 −
〈Sz

i 〉 and 〈S−
i S−

i 〉 = 0 and A−,01
η=−1 = 0 and A+,10

η=−1 = 2〈Sz
i 〉

1
2

= 〈Sz〉 1
N

∑
k

εk
Hz

coth
(

βεk
2

)
, (27)
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and from equation (26) with Az,10
η=−1 = −〈S−

i 〉 = −〈Sx
i 〉

1
2

= 〈Sx〉 1
N

∑
k

εk

H̃x
coth

(
βεk
2

)
· (28)

These are two equations which determine the two un-
knowns 〈Sx〉 and 〈Sz〉. No regularity conditions are nec-
essary.

For S = 1 one needs equations (25, 26) not only for
(n = 1, m = 0) but also for (n = 1, m = 1), (n =
2, m = 0), (n = 3, m = 0). This yields 8 equations for
the eight unknowns 〈S−〉, 〈Sz〉, 〈S−S−〉, 〈SzS−〉, 〈SzSz〉,
〈SzSzS−〉, 〈SzS−S−〉, 〈S−S−SzSz〉.

The left sides of equations (25) and (26) are the same.
Therefore we write them pairwise. For (n = 1, m = 0) we
have

2 − 〈SzSz〉 − 〈S−S−〉 =




〈Sz〉 1
N

∑
k

εk
Hz coth

(
βεk
2

)

〈S−〉 1
N

∑
k

εk
H̃x

coth
(

βεk
2

)
·

(29)
For (n = 1, m = 1) and 〈SzSzSz〉 = 〈Sz〉, valid for S = 1,
we have

1
2
(〈Sz + 〈SzSz〉 − 〈S−S−〉 − 2〈SzS−S−〉 − 2) =



1
2

(
〈S−S−〉 + 3〈SzSz〉 − 〈Sz〉 − 2

)
× 1

N

∑
k

εk
Hz coth

(
βεk
2

)

〈SzS−〉 1
N

∑
k

εk
H̃x

coth
(

βεk
2

)
·

(30)

For (n = 2, m = 0) and 〈S−S−S−〉 = 0 we find

3〈S−〉 − 〈S−Sz〉 − 〈S−SzSz〉 + 2〈SzS−〉 =


(2〈SzS−〉 + 〈S−〉) 1
N

∑
k

εk
Hz coth

(
βεk
2

)

2〈S−S−〉 1
N

∑
k

εk
H̃x

coth
(

βεk
2

)
·

(31)

For (n = 3, m = 0) we have with 〈S−S−S−S−〉 = 0 and
〈S−S−S−〉 = 0

2〈S−S−〉 − 〈S−S−Sz〉 − 〈S−S−SzSz〉 =


(3〈SzS−S−〉 + 3〈S−S−〉) 1
N

∑
k

εk
Hz coth

(
βεk
2

)
0.

(32)

From equations (32) we find 〈S−S−SzSz〉 = 2〈S−S−〉 −
〈S−S−Sz〉 and 〈SzS−S−〉 = −〈S−S−〉. The remaining
correlations are determined by the previous six equations.

Instead of using these 8 equations one can also apply
the regularity conditions, as we did in reference [5] when
working with the commutator Green’s functions. Then
one can express all correlations in terms of the correla-
tions 〈Sz〉 and 〈SzSz〉 in the case of spin S = 1, and in

terms of the moments 〈(Sz)n〉 with (n = 1, ..., 2S) for ar-
bitrary spin S, and one need only solve two equations in
the S = 1 case or 2S equations for arbitrary spin values S.

The regularity conditions are obtained from the fact
that the commutator Green’s function has to be regular
at the origin

lim
ω→0

ωGα,mn
k,η=−1 = 0, (33)

which leads to the relations

H̃xA+,mn
η=−1 + H̃xA−,mn

η=−1 + 2HzAz,mn
η=−1 = 0. (34)

Note that these relations are also obtained by equating
equations (25, 26).

For m = 0, n = 1 we obtain the first regularity
condition

〈Sx〉 =
H̃x

Hz
〈Sz〉; (35)

i.e. the knowledge of 〈Sz〉 determines 〈Sx〉.
From the definitions (12) one sees that the prefactor

is momentum independent and the relation generalized to
the multilayer can be written as

〈Sx
i 〉 =

H̃x
i

Hz
i

〈Sz
i 〉 =

Bx
i + Ji,i+1〈Sx

i+1〉 + Ji,i−1〈Sx
i−1〉

Zi
〈Sz

i 〉·
(36)

In the case of spin S = 1, equation (25) with (n =
1, m = 0) and (n = 1, m = 1) together with the regularity
conditions determines all desired correlations for spin S =
1. We demonstrate this by deriving the equations for 〈Sz〉
and 〈SzSz〉 already derived with the commutator Green’s
functions in reference [5].

Equation (25) gives for (n = 1, m = 0) with 〈S−S+〉 =
2 − 〈Sz〉 − 〈SzSz〉

2 − 〈SzSz〉 − 〈S−S−〉 =

〈Sz〉 1
N

∑
k

√
1 +

H̃xHx

HzHz
coth

(
βεk
2

)
· (37)

From the regularity conditions (34) one finds for S=1

〈S−S−〉 =

(
H̃x

Hz

)2

2 −
(

H̃x

Hz

)2 (3〈SzSz〉 − 2). (38)

Putting this into equation (37) gives the first of the desired
equations

4 − 2〈SzSz〉

1 +

(
H̃x

Hz

)2

− 〈Sz〉


2 −

(
H̃x

Hz

)2



× 1
N

∑
k

√
1 +

H̃xHx

HzHz
coth

(
βεk
2

)
= 0. (39)

The second equation is obtained from equation (25) with
(n = 1, m = 1), and the regularity conditions which relates
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〈SzS−S−〉 to 〈Sz〉 and 〈SzSz〉. This leads to

〈Sz〉

2 −

(
H̃x

Hz

)2



− 2
(
3〈SzSz〉 − 2

) 1
N

∑
k

√
1 +

H̃xHx

HzHz
coth

(
βεk
2

)
= 0.

(40)

The only difference from the corresponding equations of
reference [5] is that the square root cannot be taken out
of the sum (integral over the first Brillouin zone) because
of the momentum dependence of Hx coming from the ex-
change anisotropy. If the latter is zero as in reference [5],
only the single-ion anisotropy survives and one recovers
the original equations.

The explicit derivations above are done for pedagogi-
cal reasons, but they would not have been necessary be-
cause one obtains by subtracting equation (21) from equa-
tion (22)

2H̃xHxCz,mn
k − H̃xHzC+,mn

k − H̃xHzC−,mn
k =

1
2
(
A−,mn

η=−1 − A+,mn
η=−1

)
εkH̃x coth

(
βεk

2

)

+
1
2
(
A+,mn

η=−1 + A−,mn
η=−1

)
ε2k

H̃x

Hz
, (41)

which corresponds to equation (27) of reference [5] which
is the starting point for deriving the equations for the
moments explicitly.

For the treatment of multilayers we have to use the
eigenvector method as mentioned above. The essential fea-
tures are as follows. One starts with a transformation,
which diagonalizes the Γ -matrix of equation (8)

LΓR = Ω, (42)

where Ω is a diagonal matrix with eigenvalues ωτ (τ =
1, ..., 3N), and the transformation matrix R and its in-
verse R−1 = L are obtained from the right eigenvec-
tors of Γ as columns and from the left eigenvectors as
rows, respectively. These matrices are normalized to unity:
RL=LR=1.

Multiplying the equation of motion (8) from the left
by L and inserting 1=RL one finds

(ω1− Ω)LGmn
η = LAmn

η . (43)

Defining Gmn
η = LGmn

η and Amn
η = LAmn

η one obtains

(ω1− Ω)Gmn
η = Amn

η . (44)

Gmn
η is a new vector of Green’s functions, each compo-

nent τ of which has but a single pole

Gmn,τ
η =

Amn,τ
η

ω − ωτ
· (45)

This is the important point and allows application of the
spectral theorem to each component separately. This gives
with Cmn = LCmn

Cmn,τ =
Amn,τ

η

eβωτ + η
+

1
2
(1 − η)

1
2

lim
ω→0

ωAmn,τ
η=+1

ω − ωτ
· (46)

In reference [9] we used the commutator (η = −1). Here,
we proceed with the anticommutator (η = +1), so that
the second term in equation (46) is zero and one obtains
the original correlation vector Cmn by multiplying Cmn

from the left with R; i.e.

Cmn = RELAmn
η=+1, (47)

where E is a diagonal matrix with matrix elements Eij =
δij(eβωi + 1)−1. With the relation (20) we find

Cmn = REL(Amn
η=−1 + 2Cmn) , (48)

or
Cmn = (1 − 2REL)−1RELAmn

η=−1. (49)

For the monolayer it can be shown explicitly that the
eigenvector method yields the equations (21, 22, 23) de-
rived before. In this case the eigenvectors by which the
transformation matrices R and L are constructed can be
given explicitly. They are

R =




Hx

Hz

−(εk+Hz)

H̃x

(εk−Hz)

H̃x

Hx

Hz

(εk−Hz)

H̃x

−(εk+Hz)

H̃x

1 1 1


 , (50)

and

L =
1

4ε2k




2H̃xHz 2H̃xHz 4HzHz

−(εk + Hz)H̃x (εk − Hz)H̃x 2HxH̃x

(εk − Hz)H̃x −(εk + Hz)H̃x 2HxH̃x


 .

(51)
Putting this into equation (48) yields equa-
tions (21, 22, 23).

In order to obtain the correlations in real space, equa-
tion (49) has to be Fourier transformed and the resulting
integral equation has to be solved self-consistently. By in-
specting the expressions for the monolayer, one can show
that the inverse (1 − 2REL)−1 does not exist. There-
fore this equation cannot furnish the solution. However,
one can show that the formulation with the anticom-
mutator relation can be transformed into the result for
the commutator relation: E is a diagonal matrix with
Eij = δij(eβωi + 1)−1. With the relation (REL)−1 =
L−1(E)−1R−1 = RE−1L one obtains from equation (49)

C = (R(1− 2E)L)−1RELA

= R(1− 2E)−1ELA

= RẼLA, (52)

where Ẽij = δij
Eii

1−2Eii
= δij(eβωi − 1)−1, which still is of

no use because it diverges for ωi = 0.
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In reference [9], it was shown that the matrix R0L0,
where the index refers to the eigenvectors with eigenvalue
zero, is a projection operator onto the zero eigenvalue
space. The situation can then be remedied by project-
ing equation (52) onto the non-zero eigenvalue space with
1 − R0L0, which leads to the commutator expression for
the correlations of reference [9]

C = RẼ0LA + R0L0C, (53)

where Ẽ0 is equal to Ẽ in which the diagonal elements
corresponding to ω = 0 have been set to zero.

The problem one is confronted with in applying the
eigenvector method to this equation is that the exchange
anisotropy introduces a momentum dependence in the
projection operator. Then the projector cannot be taken
out of the integral when a Fourier transform to real space
is performed as in the case of the Anderson Callen decou-
pling of the single-ion anisotropy only. The way out is to
eliminate the projector by a transformation in one compo-
nent of equation (53), which is sufficient to establish the
integral equations of the eigenvector method. This pro-
cedure was inspired by the elimination of the disturbing
term in equations (21, 22).

The adequate transformation is found to be

T−1 =
1
2


 1 1 0

−1 1 0
0 0 2


 T =


1 −1 0

1 1 0
0 0 1


 (54)

with T−1T = 1.
Applying this transformation to equation (53)

T−1C = T−1RẼ0LTT
−1

A + T−1R0L0TT−1C (55)

and inserting the eigenvectors (50,51) transforms the sec-
ond component of the vector T−1R0L0TT−1C to zero,
and one recovers equation (25) from the second row of
the transformed equation (55), from which, together with
the regularity conditions, the integral equations for the
correlations for each (m, n)-pair are obtained.

The eigenvector method is then immediately general-
ized to the case of N layers by applying the transformation
to equation (53) read as a 3N -dimensional problem, thus
constructing 3N × 3N -matrices with sub-matrices formed
with the transformation (54) on the diagonals.

3 Numerical results

In this section we discuss results of calculations for a
square lattice including the exchange anisotropy. The in-
tegral equations (55) for determining the correlations to-
gether with the regularity conditions as derived in Ap-
pendix A of this paper are solved self-consistently by the
curve following method, which we described in detail in
Appendix A of reference [7]. A comparison with the re-
sults for the single-ion anisotropy as used in our previ-
ous work [5,9] is effected by fixing the strength of the

Fig. 1. The magnetization 〈Sz〉 and 〈SzSz〉 of a ferromagnetic
spin S = 1 Heisenberg monolayer for a square lattice are shown
as functions of the temperature (no magnetic field). Compari-
son is made between Green’s function (RPA) calculations using
the exchange anisotropy (D = 0.7, open circles) and the single-
ion anisotropy (K2 = 1, solid dots) with Anderson-Callen de-
coupling. The corresponding results of mean field (MFT) cal-
culations are also shown.

exchange anisotropy such that the Curie temperature of
a square monolayer with spin S = 1 agrees approximately
with that of a single-ion anisotropy with strength K2 = 1,
which was used in most of the calculations of our previ-
ous work. The exchange interaction strength, J = 100,
and the dipole coupling strength, g = 0.018 (correspond-
ing to the case of Ni), are taken to be the same in both
kinds of calculations. The exchange anisotropy coupling
strength turns out to be D = 0.7. In order to compare
results for different spin values all parameters are scaled
as J → J/S(S + 1), g → g/S(S + 1), D → D/S(S + 1),
K2 → K2/S(S − 1/2) and if a magnetic field is applied,
B → B/S.

In Figure 1 we display the magnetization 〈Sz〉 and its
second moment 〈SzSz〉 as functions of the temperature for
a S = 1 monolayer using Green’s function theory (denoted
as RPA). Using a value of D = 0.7 as the strength of the
exchange anisotropy yields nearly the same curve as for an
Anderson-Callen decoupling of the single-ion anisotropy
with a strength of K2 = 1. The results for the correspond-
ing mean field (MFT) calculations also practically coin-
cide with each other. As is well known and also discussed
in our previous work, the neglect of magnons results in
a Curie temperature which is more than a factor of two
larger than that obtained by including magnon excita-
tions. This difference for a monolayer is much larger than
the corresponding difference for bulk ferromagnets.

In Figure 2 we show the reorientation of the magne-
tization at a fixed temperature due to a transverse field
in x-direction, Bx. The magnetic field in z-direction is
set to zero, Bz = 0. In this case, the strength of the
dipole coupling is chosen to be g = 0.066 (a value cor-
responding to Co). As a function of the external field,



452 The European Physical Journal B

Fig. 2. The components of the magnetization 〈Sz〉 and 〈Sx〉
and the absolute value S at a fixed temperature T = 30 as
function of an external magnetic field in the x-direction, Bx,
are shown for a ferromagnetic spin S = 1 Heisenberg monolayer
for a square lattice. Also shown are the equilibrium reorienta-
tion angle θ0 and the critical reorientation field, Bx

R, at which
in-plane orientation is reached.

the x-component of the magnetization 〈Sx〉 rises linearly,
whereas its z-component 〈Sz〉 falls to zero, where the in-
plane magnetization is reached (θ0 = 90◦). The absolute
value S =

√〈Sx〉2 + 〈Sz〉2 remains constant, as it should
do, and is also shown in the figure.

In Figure 3, we show the magnetization components as
functions of the temperature for the same parameters as in
Figure 2 at a constant external field, Bx = 0.3. The com-
ponent 〈Sx〉 stays constant until the component 〈Sz〉 has
dropped to zero, and an in-plane magnetization (θ0 = 90◦)
is reached. The fact that 〈Sx〉 is constant for tempera-
tures below the reorientation temperature, T < TR, can
be understood from the regularity condition (35), which,
for a monolayer with scaled parameters (〈Sz〉 drops out of
the expression if Bz = 0), is 〈Sx〉/S = Bx/S

(4D−3gT 0)/S(S+1) .
This expression restricts the range of parameters for the
validity of our approach because 〈Sx〉/S must be ≤ 1.
Above the reorientation temperature, 〈Sz〉 remains zero
whereas 〈Sx〉 remains finite because of the field in the
x-direction and decreases slowly with increasing temper-
ature. The absolute value of the magnetization S is also
shown; above TR one has S = 〈Sx〉.

With the chosen parameters one observes a novel fea-
ture in the calculations which is connected with the in-
troduction of the exchange anisotropy together with the
dipole coupling. In this case, the eigenvalues of equa-
tion (17) become complex above a certain temperature,
i.e. below a certain value of 〈Sz〉. This behaviour occurs
quite naturally in the theory. Because the Γ -matrix of
equation (8) is real, its eigenvalues and eigenvectors, if
complex, occur pairwise as complex conjugates, and the
term RẼL in the equation (55) is real, so that one has to
do with a real integral equation. The complex eigenvalues
and vectors have to be taken seriously, and are necessary
for obtaining the results of Figure 3. The complex eigen-

Fig. 3. The components of the magnetization 〈Sz〉 and 〈Sx〉
and its absolute value S for a fixed magnetic field Bx = 0.3 as
function of the temperature are shown for a ferromagnetic spin
S = 1 Heisenberg monolayer for a square lattice. Also shown
are the equilibrium reorientation angle θ0 and the critical re-
orientation temperature, TR, at which in-plane orientation is
reached. The small horizontal arrow indicates the value of 〈Sz〉
below which complex eigenvalues occur.

values are connected with the additional term in H±
i of

equation (12), which comes from the exchange anisotropy.
This can be seen analytically by considering the dispersion
relation (17), which shows that the optimal condition for
the occurrence of complex eigenvalues is at k = 0 (thus
γk = 4). With q = 4, Bz = 0, K2 = 0 one has for the
monolayer from equation (17)

ε2k=0 = (4D − 2gT 0)2〈Sz〉2
− (gT 0〈Sx〉 + Bx)(〈Sx〉(4D − gT 0) − Bx). (56)

Complex eigenvalues occur if the second term is larger
than the first term. Using the regularity condition (37)
for 〈Sx〉, one obtains (using scaled parameters for S = 1)
a condition for the occurrence of complex eigenvalues,

〈Sz〉 <
2Bx

(4D − 3gT 0)

√
2gT 0

(4D − 2gT 0)
· (57)

This yields complex eigenvalues for 〈Sz〉 < 0.1157 at T �
53 for the parameters used in Figure 3. This is confirmed
in the numerical calculations, where of course complex
eigenvectors also occur at finite k. Enlarging Bx and/or g
increases the range of complex eigenvalues. No complex
eigenvalues occur if the dipole coupling is set equal to
zero. In our previous work [9], where we used the single-
ion anisotropy together with the dipole coupling, complex
eigenvalues never occurred, which can be understood from
the structure of the dispersion relation (17) by putting the
exchange anisotropy terms equal to zero.

In Figure 4 we display the normalized magnetizations
〈Sz〉/S of a monolayer as functions of the temperature T
for all half-integral and integral spin values ranging from
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Fig. 4. Normalized magnetization curves for 〈Sz〉/S and
〈Sx〉/S for a monolayer with spin values between S = 1/2
and S = 6 shown as functions of the temperature using the
exchange anisotropy. The corresponding results obtained with
a single-ion anisotropy (K2 = 1) are shown in the inset (from
Ref. [9]).

S = 1/2 to S = 6. In the case of the exchange anisotropy,
the reorientation temperature TR is practically the same
for all spin values. One observes a spin dependence of
the magnetization curves which decreases with increas-
ing spin. The curves, however, saturate very quickly; on
the scale of the figure, one cannot distinguish the curves
between S = 2 and S = 6. When using the single-ion
anisotropy (the results are shown as an inset) there is a
difference in the reorientation temperatures, but the mag-
netization curves again saturate very quickly (approach-
ing the classical limit) but in the opposite direction. In
both cases, the values for 〈Sx〉/S remain rather small ow-
ing to the application of the small field in the x-direction
Bx = 0.1.

In Figure 5, we display the sublayer magnetization
components 〈Sz

i 〉 and 〈Sx
i 〉 as functions of the tempera-

ture for spin S = 1 films with thicknesses ranging from
N = 1 to N = 19 layers calculated with the exchange
anisotropy using the same parameters as in Figure 4. The
reorientation temperatures T N

R can be read from the curve
in the N -T plane, which approaches the bulk value with
increasing layer thickness. Similar results were obtained in
reference [9] when using the single-ion anisotropy. To have
a direct comparison of the reorientation temperatures cal-
culated with the exchange anisotropy (D = 0.7) and the
single-ion anisotropy (K2 = 1), we display Figure 6. Be-
cause the exchange anisotropy parameter was fitted to give
the same result for the Curie temperature as a calcula-
tion with the anisotropy parameter for the monolayer, the
corresponding reorientation temperatures practically coin-
cide in this case, whereas the reorientation temperatures
turn out to be slightly higher for the exchange anisotropy
calculations with increasing film thickness. The satura-

Fig. 5. Sublayer magnetization components 〈Sz
i 〉 and 〈Sx

i 〉
as functions of the temperature for spin S = 1 films with N
layers calculated with the exchange anisotropy. The reorienta-
tion temperatures T N

R can be read from the curve in the N-T
plane.

Fig. 6. Reorientation temperature as a function of the film
thickness displayed for results with the exchange anisotropy
and the Anderson-Callen treatment of the single-ion anisotropy
(see Ref. [9] for the latter).

tion towards the bulk limit follows the same trend in both
cases.

In Figure 7 we show the average reorientation an-
gle θ0(N, T ) as a function of the temperature for films
with increasing film thickness, where we define

θ0(N, T ) = arctan
1
N

∑N
i=1〈Sz

i 〉
1
N

∑N
i=1〈Sz

i 〉
· (58)

The curves show the same saturation behaviour in the
bulk limit as already seen in the previous figures.
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Fig. 7. Average equilibrium reorientation angle for different
film thicknesses (number of layers N = 1, ..., 5, 7, 9, 11, 15, 19)
shown as a function of the temperature. This is a result of
calculations using the exchange anisotropy and the parameters
are the same as in the previous figures.

4 Conclusions

In the present paper, we have included the exchange
anisotropy in our many-body Green’s function descrip-
tion of thin ferromagnetic films. A few non-trivial changes
in the general formalism had to be implemented because
of additional momentum dependencies when the exchange
anisotropy is included. The momentum dependence of the
projector onto the zero eigenvalue space has been elimi-
nated by an appropriate transformation. A novel feature
is the appearance of complex eigenvalues and eigenvectors
of the non-symmetric matrix governing the equation of
motion for the Green’s functions when including the ex-
change anisotropy and the dipole coupling together. The
complex eigenvalues occur quite naturally in the theory
and have to be taken seriously. They are necessary to
obtain correct results above the temperature where the
magnetization 〈Sz〉 drops below a certain value.

The physical quantities calculated with the exchange
anisotropy or with the single-ion anisotropy are fairly simi-
lar when the exchange anisotropy strength is fitted in such
a way that it gives the same Curie temperature for a spin
S = 1 Heisenberg monolayer as that calculated with the
single-ion anisotropy parameter of a certain strength, the
rest of the parameters such as the exchange interaction
strength and the dipole coupling strength being the same.

In the present paper, all intra- and interlayer coupling
parameters have been taken to be the same but the com-
puter program is written in such a way that they can easily
be chosen differently. We have also shown only examples
for a monolayer with spins in the range between S = 1
and S = 6 and films with N layers for spin S = 1. It is
only a question of computer time to make calculations for
films with other (S, N) combinations.

We are indebted to P.J. Jensen for very useful discussions.

Appendix A: Treating S ≥ 1

In this Appendix we show how the regularity conditions
can be deduced for general spin quantum numbers S and
for multilayers. From the definitions (12) we see from (35)
that

H̃x
i

Hz
i

=
Bx

i

Zi
· (59)

The regularity conditions (34) can therefore be written for
general m, n in the form for each layer i

−2ZiA
z,mn
−1,i = A+,mn

−1,i Bx
i + A−,mn

−1,i Bx
i . (60)

For the calculation of the correlations for higher spin we
use equation (25) generalized to the multilayer case. We
leave out the layer index i in all formulas which follow.

〈(Sz)m(S−)nS+〉 − 〈(Sz)m(S−)nS−〉
− 1

2
(A−,mn

η=−1 − A+,mn
η=−1) =

1
2
(A−,mn

η=−1 + A+,mn
η=−1)

× 1
N

∑
k

εk
Hz

coth
(

βεk
2

)
· (61)

We express all correlation functions occurring in this equa-
tion in a standard form where all powers of Sz are written
to the left of the powers of S−:

C(m, n) = 〈(Sz)m(S−)n〉· (62)

Then, with the relations [Sz, (S−)n]− = −n(S−)n and
S−S+ = S(S + 1) − Sz − (Sz)2, we find that

〈(Sz)m(S−)nSz〉 = nC(m, n) + C(m + 1, n) ,

〈(Sz)m(S−)nS+〉 =
(
S(S + 1) − n(n − 1)

)
C(m, n − 1)

− (2n − 1)C(m + 1, n− 1)
− C(m + 2, n− 1) ,

〈(Sz)m(S−)nS−〉 = C(m, n + 1) . (63)

The commutators can also be expressed in terms of
the C(m, n) using the binomial series

Az,mn
−1 = −nC(m, n) ,

A+,mn
−1 =

〈[(
(Sz − 1)m − (Sz)m

)
S−S+ + 2Sz(Sz − 1)m

+ (n − 1)(n + 2Sz)(Sz)m
]
(S−)n−1

〉

= S(S + 1)
m∑

i=1

(
m
i

)
(−1)iC(m − i, n − 1)

+ (2n + m)C(m + 1, n− 1)

+
m+1∑
i=2

(
m + 1

i

)
(−1)i+1C(m + 2 − i, n − 1)

+ n(n − 1)C(m, n − 1) ,

A−,mn
−1 =

〈[
(Sz + 1)m − (Sz)m

]
(S−)n+1

〉
=

m∑
i=1

(
m
i

)
C(m − i, n + 1) . (64)
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Now by putting equation (64) into equation (60) the reg-
ularity conditions for all m and n can be written in terms
of correlations defined in the standard form:

2ZnC(m, n) = Bx

[
S(S+1)

m∑
i=1

(
m
i

)
(−1)iC(m−i, n−1)

+ (2n + m)C(m + 1, n − 1)

+
m+1∑
i=2

(
m + 1

i

)
(−1)i+1C(m + 2 − i, n − 1)

+ n(n − 1)C(m, n − 1)

]
+ Bx

m∑
i=1

(
m
i

)
C(m − i, n + 1).

(65)

For a given spin S, this set of linear equations for the
correlations has to be solved for all m + n ≤ 2S + 1.
The solutions have to be put via equations (63) together
with (64) into equations (61), thus leading to a set of 2S
equations for the moments 〈(Sz)p〉 (p = 1,. . . ,2S), which
have to be solved self-consistently. The highest moment
〈(Sz)2S+1〉 has been eliminated in favour of the lower ones
through the relation

∏
MS

(Sz − MS) = 0.
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7. P. Fröbrich, P.J. Kuntz, M. Saber, Ann. Phys. (Leipzig)

11, 387 (2002)
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